Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# B. Thimme Gowda,<sup>a</sup>\* Jozef Kožíšek,<sup>b</sup> Miroslav Tokarčík<sup>c</sup> and Hartmut Fuess<sup>d</sup>

<sup>a</sup>Department of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, <sup>b</sup>Department of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, <sup>c</sup>Department of Chemical Physics, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic, and <sup>d</sup>Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany

Correspondence e-mail: gowdabt@yahoo.com

#### **Key indicators**

Single-crystal X-ray study T = 299 KMean  $\sigma$ (C–C) = 0.008 Å R factor = 0.094 wR factor = 0.206 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# *N*-(3,5-Dichlorophenyl)-2,2,2-trimethyl-acetamide

Molecules of the title compound,  $C_{11}H_{13}Cl_2NO$ , are linked into a chain running along the *b*-axis direction. The structure shows a close resemblance to those of related amides but with slightly different bond parameters. Received 11 March 2007 Accepted 22 March 2007

# Comment

The amide unit is an important constituent of many biologically significant compounds. As part of a study of the effect of ring and side-chain substituents on the solid-state geometry of *N*-aromatic amides (Gowda *et al.*, 2006; Gowda, Kozisek *et al.*, 2007) we report here the crystal structure of *N*-(3,5dichlorophenyl)-2,2,2-trimethylacetamide, (I) (35DCPTMA) (Fig. 1). Comparison of the bond parameters of 35DCPTMA with those of other amides, namely, *N*-(phenyl)-2,2,2trimethylacetamide (PTMA) and *N*-(3,5-dimethylphenyl)-2,2,2-trimethylacetamide (35DMPTMA) (Gowda, Paulus *et al.*, 2007) are shown in Table 2. Comparison revealed that *meta*-dichloro ring substitution does not really affect the bond lengths, which are roughly identical within experimental error.



Molecules of the title compound are linked by  $N-H\cdots O$  hydrogen bonds (Table 1), forming a chain running along the *b* axis (Fig. 2).



labelling scheme. Displacement ellipsoids are drawn at the 30%

#### Figure 1 The molecular structure of the title compound, showing the atom-

probability level.

© 2007 International Union of Crystallography All rights reserved

# **Experimental**

The title compound was prepared according to the literature method of Shilpa & Gowda (2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were obtained by slow evaporation of an ethanol solution.

V = 2479.7 (13) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.40 \times 0.14 \times 0.03$  mm

14622 measured reflections

2250 independent reflections

1165 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.50 \text{ mm}^{-1}$ T = 299 (2) K

 $R_{\rm int} = 0.078$ 

139 parameters

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-2}$ 

 $\Delta \rho_{\min} = -0.19 \text{ e} \text{ Å}^{-3}$ 

Z = 8

#### Crystal data

| C <sub>11</sub> H <sub>13</sub> Cl <sub>2</sub> NO |
|----------------------------------------------------|
| $M_r = 246.12$                                     |
| Orthorhombic, Pbca                                 |
| a = 10.655 (2)  Å                                  |
| b = 9.999 (3) Å                                    |
| c = 23.275 (9) Å                                   |

#### Data collection

Oxford Diffraction Xcalibur diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2006)  $T_{\rm min} = 0.855, T_{\rm max} = 0.976$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.094$ |  |
|---------------------------------|--|
| $wR(F^2) = 0.206$               |  |
| S = 1.14                        |  |
| 2250 reflections                |  |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H     | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|---------|-------------------------|--------------|------------------|
| $N7 - H7 \cdots O6^{i}$     | 0.86    | 2.08                    | 2.900 (5)    | 159              |
| 0 1 (1)                     | . 1 . 1 |                         |              |                  |

Symmetry code: (i)  $-x + \frac{1}{2}, y + \frac{1}{2}, z$ .

#### Table 2

Comparison of selected geometric parameters (Å,  $^{\circ}$ ) of the title compound with those in other related amides.

| Parameter             | 35DCPTMA  | PTMA      | 35DMPTMA  |
|-----------------------|-----------|-----------|-----------|
| Space group           | Pbca      | $Pca2_1$  | Pbca      |
| Z                     | 8         | 4         | 8         |
| $C(r) - C(r)_{mean}$  | 1.370 (6) | 1.377 (4) | 1.381 (4) |
| $C(r) - C(r)_{min}$   | 1.357 (6) | 1.362 (5) | 1.363 (5) |
| $C(r) - C(r)_{max}$   | 1.387 (6) | 1.384 (3) | 1.393 (4) |
| C(r) - N              | 1.414 (6) | 1.420 (2) | 1.417 (3) |
| N-C(O)                | 1.363 (5) | 1.348 (3) | 1.342 (3) |
| C-O                   | 1.192 (5) | 1.219 (2) | 1.223 (3) |
| C(O) - C(side)        | 1.515 (6) | 1.532 (2) | 1.523 (4) |
| C(2r) - C(1r) - C(6r) | 119.9 (4) | 119.7 (2) | 119.6 (3) |
| C(2r) - C(1r) - N     | 123.1 (4) | 122.4 (2) | 122.1 (3) |
| C(6r) - C(1r) - N     | 117.0 (4) | 117.9 (2) | 118.2 (3) |
| C(1r) - N - C(O)      | 126.9 (4) | 126.8 (2) | 127.2 (2) |
| N-C(O)-C(side)        | 115.4 (4) | 116.1 (2) | 116.8 (2) |
| N-C(O)-O              | 120.5 (4) | 122.1 (2) | 120.9 (3) |
| O-C(O)-C(side)        | 124.1 (4) | 121.9 (2) | 122.2 (2) |

Note: r = ring and side = side chain.

All H atoms were positioned geometrically and treated as riding with C-H = 0.93 Å (CH aromatic) or 0.96 Å (CH<sub>3</sub>) and N-H = 0.86 Å, with  $U_{iso}(H) = 1.2U_{eq}(CH \text{ or NH})$  and  $U_{iso}(H) = 1.5U_{eq}(CH_3)$ .



#### Figure 2

Partial packing view, showing the N-H···O hydrogen bonds linking the molecules into a chain. H bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i)  $\frac{1}{2} - x$ ,  $\frac{1}{2} + y$ , z]

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997), *PLATON* and *WinGX* (Farrugia, 1999).

BTG gratefully thanks the Alexander von Humboldt Foundation, Bonn, Germany, for a research fellowship. JK and MT thank the Grant Agency of the Slovak Republic (Grant No. 1/2449/05).

### References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588– 594.
- Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
- Gowda, B. T., Paulus, H., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62. In the press.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.